Numerical Methods-Lecture IV:
 Bellman Equations: Solutions

Trevor Gallen

Fall, 2015

Preliminaries

- We've seen the abstract concept of Bellman Equations
- Now we'll talk about a way to solve the Bellman Equation: Value Function Iteration
- This is as simple as it gets!

Value Function Iteration

- Bellman equation:

$$
V(x)=\max _{y \in \Gamma(x)}\{F(x, y)+\beta V(y)\}
$$

- A solution to this equation is a function V for which this equation holds $\forall x$
- What we'll do instead is to assume an initial V_{0} and define V_{1} as:

$$
V_{1}(x)=\max _{y \in \Gamma(x)}\left\{F(x, y)+\beta V_{0}(y)\right\}
$$

- Then redefine $V_{0}=V_{1}$ and repeat
- Eventually, $V_{1} \approx V_{0}$
- But V is typically continuous: we'll discretize it
- Make function continuous by connecting the dots

Aside: Approximating F(x)

Aside: Approximating F(x)

Aside: Approximating F(X)

Aside: Approximating F(X)

Aside: Approximating F (X)

Basic Steps

1. Choose grid of states X and a stopping threshold ϵ
2. Assume an initial V_{0} for each $x \in X$
3. For each $x \in X$, solve the problem:

$$
\max _{y \in \Gamma(x)}\left\{F(x, y)+\beta V_{0}(y)\right\}
$$

4. Store the solution as $V_{1}(x)$
5. Redefine $V_{0}=V_{1}$
6. Repeat steps 3-5 until $\operatorname{abs}\left(V_{1}-V_{0}\right)<\epsilon$.
7. Now, for all your relevant points, the Bellman equation holds
8. Solve the system one last time, storing the policy function

How do I solve the problem?

- Step 3 requires you to solve:

$$
\max _{y \in \Gamma(x)}\left\{F(x, y)+\beta V_{0}(y)\right\}
$$

- How do we do it?
- How do we maximize?
- We'll learn good ways
- For now, discretize all your choices like you discretized your states
- Pick best choice, store utility
- If you allow for choices to imply states that aren't defined, interpolate linearly

Aside: Intuition for VFI

- In the iteration period, all future states are the same: we don't care what happens.
- In a "cake-eating" example, this means eat everything.
- In such a scenario, we eat all the cake: we're happier with more cake.
- When we iterate once more, now tomorrow is the last day on earth: we now prefer saving a little cake.
- When we iterate again, tomorrow's tomorrow is the last day...
- Because we discount, as we iterate more, whatever we do on the last day matters less and less
- Eventually, we're all but immortal: $\lim _{t \rightarrow \infty} \beta^{t}=0$

Aside: Intuition for VFI

- In the iteration period, all future states are the same: we don't care what happens.
- In a "cake-eating" example, this means eat everything.
- In such a scenario, we eat all the cake: we're happier with more cake.
- When we iterate once more, now tomorrow is the last day on earth: we now prefer saving a little cake.
- When we iterate again, tomorrow's tomorrow is the last day...
- Because we discount, as we iterate more, whatever we do on the last day matters less and less
- Eventually, we're all but immortal: $\lim _{t \rightarrow \infty} \beta^{t}=0$ (really, $\left.\lim _{t \rightarrow \infty} \beta^{t} u_{2}\left(x_{t}, x_{t+1}\right) x_{t+1}=0\right)$

LET'S DO A CONCRETE EXAMPLE

$$
\begin{gathered}
U\left(c_{t}\right)=\log \left(c_{t}\right) \\
c_{t}+i_{t}=k_{t}^{0} \cdot 7 \\
k_{t+1}=0.93 k_{t}+i_{t}
\end{gathered}
$$

- Discretize states
- Minimum: $\underline{k}=0$
- Maximum: $\bar{k}=0.93 \bar{k}+\bar{k}^{0.7} \Rightarrow \bar{k}=7075$
- Choose 10 possible steps
- Allow choice of feasible discrete k
- Choose best, store it.
- Repeat

Solving in Matlab

```
alpha = 0.7;
delta = 0.07;
k_min = 0;
k_max = 7075;
k_num = 10;
k_space = linspace(k_min,k_max,k_num);
V_1 = 0.*k_space;
V_0 = V_1;
error = Inf;
while error > 1e-10
    for k_index = 1:k_num
    k = k_space(k_index);
    kchoice_index = find(k_space < 0.93k+k.^0.7);
    k_choices = k_space(kchoice_index);
    c_choices = 0.93*k+k. ^0.7-k_choices;
    utility = log(c_choices) + beta V_0(find(kchoice_index));
    [V,ind] = max(utility);
    V_1(k_index) = V;
    k_best(k_index) = k_choices(ind);
    end
    error = max(abs(V_1-V_0))
end
```


Simulating in Matlab

```
num_i = k_num
num_t = 50;
k_sim = NaN(num_i,num_t);
k_sim(:,1) = NaN(num_i,num_t);
for i = 1:num_i
for t = 1:num_t
k_sim(i,t+1) = k_best(find(k_space)==k_sim(i,t))
end end
```

